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1 Abstract	18	

Brain	controllability	properties	are	normally	derived	from	the	white	matter	fiber	tracts	in	which	the	19	

neural	substrate	of	the	actual	energy	consumption,	namely	the	gray	matter,	has	been	widely	ignored.	20	

Here,	we	study	the	relationship	between	gray	matter	volume	of	regions	across	the	whole	cortex	and	21	

their	 respective	control	property	derived	from	the	structural	architecture	of	 the	white	matter	 fiber	22	

tracts.	The	data	suggests	that	the	ability	of	white	fiber	tracts	to	exhibit	control	at	specific	nodes	not	23	
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only	 depends	 on	 the	 connection	 strength	 of	 the	 structural	 connectome	 but	 additionally	 strongly	24	

depends	on	gray	matter	volume	at	the	host	nodes.	Our	data	indicates	that	connectivity	strength	and	25	

gray	matter	volume	interact	with	respect	to	the	brain’s	control	properties.	Disentangling	effects	of	the	26	

regional	gray	matter	volume	and	connectivity	strength,	we	found	that	frontal	and	sensory	areas	play	27	

crucial	roles	in	controllability.	Together	these	results	suggest	that	structural	and	regional	properties	of	28	

the	 white	 matter	 and	 gray	 matter	 provide	 complementary	 information	 in	 studying	 the	 control	29	

properties	of	the	intrinsic	structural	and	functional	architecture	of	the	brain.	30	

Key	words:	Network	control	theory,	Gray	matter,	Brain	controllability	31	

	32	

2 Introduction	33	

Network	control	 theory,	as	 recently	applied	to	white	matter	 (WM)	 fiber	 tracts	 in	 the	human	brain,	34	

provides	 a	 novel	 mechanistic	 framework	 to	 describe	 the	 ease	 of	 switching	 between	 different	35	

dynamical	functional	brain	states,	and	the	regions	that	best	drive	these	dynamics	(Bassett	&	Sporns,	36	

2017;	 John	 D	 Medaglia,	 2019;	 John	 Dominic	 Medaglia,	 Pasqualetti,	 Hamilton,	 Thompson-Schill,	 &	37	

Bassett,	 2017).	 This	 approach	has	 the	potential	 to	 inform	 theories	of	dynamic	 cognitive	processes,	38	

clinical	neuroscience,	neurodegeneration,	and	brain	reserve.	Specifically,	there	is	evidence	that	these	39	

global	brain	state	transitions	are	impaired	in	clinical	populations	(Braun	et	al.,	2019;	Jeganathan	et	al.,	40	

2018;	Kenett,	Beaty,	&	Medaglia,	2018)	and	that	such	impairments	can	be	traced	back	to	specific	driver	41	

nodes	(Jeganathan	et	al.,	2018;	Yoed	N	Kenett	et	al.,	2018;	Muldoon	et	al.,	2016;	Zoeller	et	al.,	2019).	42	

However,	this	far,	these	control	properties	have	been	exclusively	derived	from	WM	fiber	tracts	without	43	

the	consideration	of	gray	matter	(GM)	properties.	Given	the	importance	of	GM	properties	for	cognitive	44	

functioning	and	brain	health,	and	the	established	interrelationships	between	white	and	gray	matter,	it	45	

has	been	 suggested	 that	 regional	 gray	matter	 integrity	may	be	a	 critical	 contributor	 and	proxy	 for	46	

network	and	node	controllability	(John	Dominic	Medaglia	et	al.,	2017;	J.	D.	Medaglia,	Zurn,	Sinnott-47	

Armstrong,	&	Bassett,	2017).		48	



Several	lines	of	research	suggest	that	GM	may	be	essential	to	understanding	brain	controllability.	First,	49	

GM	 is	 a	 proxy	 for	 the	 quantity	 of	 neurons	 and	 synaptic	 densities	 in	 a	 particular	 region	 (Lüders,	50	

Steinmetz,	&	Jäncke,	2002),	and	metabolic	energy	expenditure	is	primarily	realized	through	the	gray	51	

matter	cell	bodies	that	scaffold	white	matter	tracts	(Zhu	et	al.,	2012).	In	neurodegenerative	disorders,	52	

region	 specific	 lesions	 of	 GM	 only	 partially	 agrees	 with	 corresponding	 lesions	 in	 WM	 in	 some	53	

neurodegenerative	disorders	(Agosta	et	al.,	2011;	Bodini	et	al.,	2009;	Douaud	et	al.,	2007;	Raine,	Lencz,	54	

Bihrle,	LaCasse,	&	Colletti,	2000;	Villain	et	al.,	2008),	suggesting	that	GM	reserve	and	WM	may	provide	55	

independent	 additional	 information	 with	 respect	 to	 controllability	 properties	 of	 the	 structural	56	

connectome.	 Taken	 together,	 these	 studies	 motivated	 the	 hypothesis	 that	 the	 controllability	57	

properties	 suggested	by	 the	WM	should	be	partially	 related	 to	or	even	predicted	by	GM	 integrity.	58	

Critically,	 it	 has	 been	 argued	 that	 including	 GM	 metrics	 in	 control	 theory	 will	 extend	 traditional	59	

volumetrics	 into	 network	 neuroscience	 (John	Dominic	Medaglia	 et	 al.,	 2017).	Nevertheless,	 to	 our	60	

knowledge	the	nature	of	the	interdependency	between	controllability	properties	and	GM	properties	61	

has	not	been	addressed	empirically.	62	

To	tackle	this	issue,	we	used	two	independent	data	sets	to	investigate	whether,	and	if	so,	how	control	63	

properties	extracted	from	the	structural	connectome	relate	to	properties	of	the	gray	matter,	i.e.	GM	64	

volume	which	engenders	other	GM	metrics	e.g.	surface	and	thickness	(Kong	et	al.,	2015;	Winkler	et	al.,	65	

2010).	 Since	previous	 studies	have	 shown	 that	brain	controllability	 can	be	 largely	explained	by	 the	66	

connectivity	strength	of	 the	structural	connectome,	we	also	considered	whether	GM	volume	could	67	

explain	additional	variance	in	controllability	not	accounted	for	by	white	matter	connectivity.	Initially,	68	

we	investigated	how	WM	and	GM	factors	affect	brain	controllability	on	a	whole	brain	level.	In	a	further	69	

step,	we	identified	the	brain	regions	for	which	controllability	was	most	sensitive	to	GM	and/or	WM	70	

properties.	We	discuss	our	findings	with	respect	to	their	potential	relevance	to	cognitive	and	clinical	71	

neuroscience.		72	

3 Methods	and	Materials	73	



3.1 Data	acquisition	74	

The	structural	and	diffusion	datasets	are	from	65	healthy	subjects	with	the	age	range	of	22	to	36	(28	75	

M,	 mean	 age	 29.2)	 which	 were	 taken	 from	 the	 Human	 Connectome	 Project	 (HCP,	 Principal	76	

Investigators:	David	Van	Essen	and	Kamil	Ugurbil;	1U54MH091657;	Van	Essen	et	al.,	2012).	While	HCP	77	

offers	more	than	1100	subjects,	the	data	in	the	present	study	is	limited	by	the	resources	necessary	for	78	

preprocessing.	 We	 have	 tried	 to	 lift	 the	 potential	 bias	 by	 including	 an	 independent	 dataset	 (see	79	

replication	study).	80	

3.1.1 MRI	Data	Specification	81	

Structural	images	were	acquired	with	the	following	specification:	T1w	MPRAGE,	TR	2400	ms,	TE	2.14	82	

ms,	 TI	 1000	ms,	 flip	 angle	 8	 degrees,	 Field	 of	 View	 (FOV)	 224x224,	 256	 slices,	 voxel	 size	 0.7	mm	83	

isotropic,	Bandwidth	210	Hz/Px,	IPAT	2,	acquisition	time	7:40	min.			84	

Diffusion	weighted	imaging	(DWI)	data	were	acquired	by	using	a	Spin-echo	EPI	sequence	with	TR	5520	85	

ms,	TE	89.5	ms,	flip	angle	78	degrees,	voxel	size,	1.25	mm	isotropic,	111	slices,	multiband	factor,	3,	86	

echo	spacing,	0.78	ms,	b-values	1000,	2000,	and	3000	s/mm2.	For	details,	see	(Glasser	et	al.,	2013;	Van	87	

Essen	et	al.,	2012).	88	

3.1.2 AAL	mask	definitions	and	native	space	transformation	89	

The	 3-D	 anatomy	 atlas	 of	 the	 AAL2	 was	 acquired	 from	 the	 neurofunctional	 imaging	 group	90	

(http://www.gin.cnrs.fr/en/tools/aal-aal2/)	 (Tzourio-Mazoyer	 et	 al.,	 2002).	 It	 contains	 120	 regions,	91	

which	include	subcortical	structures	i.e.	thalamus,	caudate,	putamen,	pallidum,	etc.	However,	it	misses	92	

the	brainstem.	The	12-parameter	affine	transformation	(Jenkinson,	Bannister,	Brady,	&	Smith,	2002;	93	

Jenkinson	&	Smith,	2001)	was	computed	for	each	volunteer’s	T1	and	non-diffusion	image	and	the	MNI	94	

spaced	standard	brain.	The	resulted	transformation	matrix	was	applied	to	the	left	and	right	AAL	brain	95	

regions	to	transform	them	into	the	native	structural	and	diffusion	space.		96	

3.1.3 Structural	volume	analysis	97	



The	tissue	type	segmentation	employed	SPM12	unified	segmentation	approach.	The	process	resulted	98	

in	segmented	gray,	white,	and	cerebro-spinal	fluid	(CSF)	volumes.	In	the	next	step,	we	determined	the	99	

volume	of	the	brain,	gray	matter,	and	under	each	AAL	atlas	region	for	all	subjects.		The	skull	extracted	100	

AC-PC	 aligned	 native	 spaced	 NIFTI	 structural	 scans	 were	 obtained	 from	 the	 Human	 Connectome	101	

database.	 In	 the	next	 step,	 the	 tissue	 type	 segmentation	was	applied	 to	delineate	 the	gray	matter	102	

within	the	brain	using	the	SPM12	unified	segmentation	approach	(Ashburner	&	Friston,	2005).	This	103	

segmentation	 approach	 employs	 a	 generative	model	 that	 combines	 non-linear	 registration,	 tissue	104	

classification,	and	bias	correction.		105	

3.1.4 Preprocessing	and	Diffusion-Fit	106	

The	obtained	HCP	diffusion	data	were	 reconstructed	using	a	 SENSE1	algorithm	 (Sotiropoulos	et	 al.	107	

2013).	The	DWI	data	was	corrected	for	motion	and	distortion	(Andersson	et	al.	2003;	Andersson	and	108	

Sotiropoulos	 2015,	 2016).	 Furthermore,	 pre-processing	 included	 unringing,	 denoising,	 and	 tensor	109	

analysis	implemented	in	MRtrix	(Tournier,	Calamante,	&	Connelly,	2012).					110	

The	data	were	 reconstructed	using	 the	multi-shell	multi-tissue	constrained	spherical	deconvolution	111	

(Jeurissen,	 Tournier,	 Dhollander,	 Connelly,	 &	 Sijbers,	 2014).	 The	 resulted	 Orientation	 Distribution	112	

Function	 (ODF)	was	 registered	 to	 the	 structural	 space.	 The	 initial	 tractogram	was	 generated	 using	113	

mrtrix-tckgen,	resulting	 in	100	million	streamlines	within	each	subject.	 In	the	next	step,	we	applied	114	

spherical	deconvolution	informed	filtering	of	tractograms	(SIFT)	to	reduce	the	streamline	count	to	10	115	

million.	 In	the	final	step,	the	number	of	streamlines	was	determined	between	AAL	brain	regions	to	116	

produce	 a	 connectome.	 The	 analysis	 steps	 in	more	 details	 are	 documented	 at	 the	mrtrix	 docs	 i.e.		117	

(https://mrtrix.readthedocs.io/en/latest/quantitative_structural_connectivity/structural_connectom118	

e.html).	119	

3.2 Network	control	framework	120	

Controllability	is	one	of	the	fundamental	concepts	in	the	control	theory.	The	notion	of	controllability	121	

of	 a	 dynamical	 system	 was	 first	 introduced	 in	 (Kalman,	 1963).	 State	 (output)	 controllability	 of	 a	122	



dynamical	system	is	defined	as	the	possibility	of	driving	states	(outputs)	of	the	system	from	an	arbitrary	123	

initial	condition	to	any	desired	values	 in	finite	time	by	applying	appropriate	control	signals	 (Kailath,	124	

1980).	The	most	famous	classic	method	to	ensure	state	controllability	of	a	dynamical	system	defined	125	

by	the	noise-free	linear	discrete-time	and	time-invariant	network	model	says	that	the	system	126	

𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢 𝑘 		 	 (1)	127	

𝑦 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑢(𝑘)		 	 (2)	128	

is	full	state	controllable	if	and	only	if	the	Kalman’s	controllability	matrix	[B,	AB,	…,	An-1B]	has	full	rank	129	

(Kailath,	1980).	In	the	system	represented	in	equations	1-2,	𝒙	 ∈	ℝn	and	𝒖	 ∈	ℝp	are	state	and	input	130	

signals,	respectively.	𝐴, 𝐵, 𝐶	and	𝐷	are	matrices	with	appropriate	dimensions	where	𝐴	and	𝐵	are	called	131	

state	and	input	matrices,	respectively.	When	applied	in	the	context	of	brain	controllability,	𝒙	describes	132	

the	activity	of	brain	regions.	𝐴	is	an	adjacency	matrix	that	represents	the	interactions	between	brain	133	

regions	and	its	elements	are	often	the	strength	of	the	white	tracts	connecting	two	areas	(see	section	134	

3.3	for	details).	The	input	matrix	𝐵	identifies	the	control	nodes	in	the	brain	which	may	be	confined	to	135	

one	or	more	brain	areas	whose	activities	are	denoted	by	the	corresponding	elements	of	𝒙.	While	the	136	

controllability	matrix	is	a	valuable	metric	to	study	the	overall	character	of	asystem,	it	does	not	directly	137	

quantify	potential	 ability	 of	 different	nodes	of	 the	 system	 to	 act	 as	driver	nodes.	 To	achive	 this,	 a	138	

common	 practice	 is	 to	 use	 𝑇𝑟(𝑊7)	 which	 is	 the	 trace	 of	 the	 controllability	 Gramian	 𝑊7 =139	

𝐴8𝐵𝐵9(𝐴9)8:
8;< 	when	the	system	is	controlled	from	node	𝑘.	Referred	to	as	average	controllability	140	

(AC),	this	metric	is	the	most	commonly	used	controllability	measure	in	the	neuroimaging	literature	(Gu	141	

et	al.,	2015;	John	D	Medaglia,	2019)	and	is	a	measure	of	the	average	energy	required	for	node	𝑘	to	142	

steer	the	brain	into	all	possible	output	states	(see	Tang	&	Bassett,	2018	a	formal	definition).	In	addition	143	

to	AC	that	quantifies	the	ability	of	the	nodes	to	drive	the	who	system	into	all	potential	target	states,	144	

Modal	Controllability	(MC)	is	another	commonly	used	metric	which	is	a	measure	of	the	ability	of	the	145	

nodes	 to	 push	 the	 system	 toward	 difficult-to-reach	 states.	 	 Formally	 defined	 as	 ф7 = [1 −@
A146	

𝜉AC(𝐴)]𝑣7AC 	MC	is	a	scaled	measure	of	difficulty	of	driving	the	system	toward	all	𝑁	modes	of	𝐴	 from	147	

node	𝑘	(Pasqualetti,	Zampieri,	&	Bullo,	2014).	148	



3.3 Statistical	analysis		149	

Linear	 mixed	 effect	 (LME)	 regression	 (Baayen,	 Davidson,	 &	 Bates,	 2008)	 allows	 to	 model	 the	150	

interrelation	 among	 multiple	 variables	 and	 has	 the	 ability	 to	 accommodate	 various	 experimental	151	

designs	including	repeated	measurements,	subject	variability,	and	grouping	structures	in	one	unified	152	

implementation	(Boisgontier	&	Cheval,	2016).	In	this	paper,	we	model	the	interrelation	between	brain	153	

controllability	(AC	and	MC),	GM	volume,	and	connectivity	strength,	for	which	we	train	multiple	LMEs	154	

for	different	tasks.	 In	these	models,	the	elements	𝐴8A 	of	the	structural	connectivity	matrix	(i.e.	𝐴	 in	155	

equation	1)	represent	the	number	of	streamlines	between	regions	𝑖	and	𝑗.	To	ensure	robustness,	we	156	

keep	only	10%	of	strongest	connections	using	brain	connectivity	toolbox	(Rubinov	&	Sporns,	2010).	157	

Within	this	scheme,	ith	node	degree	is	estimated	by	the	sum	of	all	elements	of	A	in	the	ith	row.	GM	158	

volume	 is	estimated	 from	the	unified	 segmentation	approach	within	SPM	12	 (see	 section	3.1.3	 for	159	

details).	In	particular,	we	include	regional	gray	matter	(rGM)	and	total	intracranial	volume	(TIV)	in	the	160	

LMEs.	161	

3.3.1 LME	formulation	and	statistical	model	comparison	162	

To	predict	brain	 controllability	metrics	based	on	 structural	measures	of	 the	brain	we	built	 a	 linear	163	

mixed-effects	 (LME)	regression	(Baayen	et	al.,	2008)	using	a	step-wise	approach	retaining	an	effect	164	

only	if	there	was	a	significant	difference	between	the	log-likelihood	ratio	of	the	two	models,	based	on	165	

an	ANOVA	(p	<	0.05).	Statistical	analysis	was	performed	using	the	lme4	package	in	R	(Bates,	Maechler,	166	

Bolker,	&	Walker,	2014).	Specifically,	we	used	two	models.	The	first	model	is	defined	by	controllability	167	

(AC/MC)	~	TIV+	Regions	+	Nodal	degree	*	rGM	+	(1|participants)	where	“*”	denotes	the	interaction	168	

where	we	are	interested	in	quantifying	the	contribution	of	regional	gray	matter	and	nodal	degree	in	169	

explaining	AC	after	controlling	for	the	regional	differences	of	AC.	In	a	second	model	which	is	defined	170	

as	 AC/MC	 ~	 TIV+	 Regions	 *	 Nodal	 degree	 +	 Regions	 *	 rGM	 +	 (1|	 participants)	 we	 investigate	 the	171	

contribution	of	regional	differences	of	regional	gray	matter	and	regional	differences	of	nodal	degree	172	

onto	AC.	173	



On	the	models,	the	volume	of	the	entire	brain	(TIV)	was	added	as	a	covariate	because	of	the	evidence	174	

that	 it	 is	related	to	properties	of	the	GM	(Lüders	et	al.,	2002).	 In	these	models	all	the	variables	are	175	

centered	around	zero	within	each	subject	and	normalized	using	z-transformation.	Furthermore,	we	176	

statistically	tested	different	models	explaining	the	same	outcome	measure	using	the	lme4	package	in	177	

R	(Bates	et	al.,	2014).	178	

3.3.2 Null	models	179	

To	further	test	our	hypothesis,	similar	to	(Lee,	Rodrigue,	Glahn,	Bassett,	&	Frangou,	2020),	we	built	180	

random	 null	 models	 by	 randomizing	 the	 structural	 connectivity	 matrix	 (i.e.	 A	 in	 equation	 1)	 and	181	

estimated	the	interrelation	between	controllability,	gray	matter,	degree	distribution	as	explained	in	182	

section	3.3.1.		Specifically,	preserving	its	degree	distribution,	we	randomized	matrix	A	1000	times	using	183	

the	brain	connectivity	toolbox		(Rubinov	&	Sporns,	2010)	and	compared	the	beta	values	of	rGM	in	the	184	

randomized	networks	to	that	obtained	in	the	original	network.	185	

	186	

4 Results	187	

4.1 Effects	of	gray	matter	on	brain	controllability	188	

In	 a	 first	 step,	we	 investigated	 if	we	 could	 replicate	previously	 reported	 findings	 that	higher	nodal	189	

degree	relates	to	higher	AC	(see	Figure	1A).	We	built	a	linear	mixed	effects	model	to	predict	AC	based	190	

on	nodal	degree	with	subjects	as	a	random	intercept	(for	details	see	Supplementary	Material-Model	191	

comparisons	Table	C1).	Our	results,	summarized	in	Figure	1A	replicates	previous	findings	(Gu	et	al.,	192	

2015)	suggesting	that	structural	connectivity	strength	quantified	in	terms	of	nodal	degree	across	the	193	

whole	brain	is	positivity	associated	with	nodal	AC.	In	the	second	step	we	investigated	if,	beyond	this	194	

positive	association	between	degree	and	AC,	rGM	explains	additional	variance	of	AC.	To	this	aim,	we	195	

extended	our	model	by	including	regional	GM	volume	and	TIV	as	additional	predictors	to	nodal	degree	196	

Our	results	show	that	rGM	and	nodal	degree	are	both	critical	to	explain	AC	and	their	respective	sizes	197	

of	 effect	 are	 comparable	 (βdegree=	 0.36	 [p-value	 <	 0.001],	 βrGM	 =	 0.44	 [p-value	 <	 0.001]).	 Next,	 we	198	



included	regions	as	additional	predictors	to	further	explain	AC	and	to	improve	the	fitness	of	the	model.	199	

Our	results	show,	that	rGM	and	AC	are	significantly	positively	associated	(see	Figure	1B)	and	interact	200	

with	nodal	degree	(β=0.04,	95%	CI:[0.01	0.07],	pbonf	=	0.01),	suggesting	that	highest	levels	of	average	201	

controllability	were	best	explained	with	concurrent	high	rGM	and	high	node	degree	(see	Figure	1C).	To	202	

verify	that	the	AC	cannot	not	be	explained	with	simpler	models,	we	compared	competing	models	(see	203	

Supplementary	 Material-Model	 comparisons	 Table	 C1).	 The	 results	 show	 that	 the	 full	 model	 (for	204	

details,	see	the	competing	models	Supplementary	Material-Model	comparisons	Table	C1	and	the	full	205	

outcomes	of	the	winning	model	in	Table	S1)	outperformed	all	alternatives	Finally,	we	used	randomized	206	

null	networks	(for	details	see	section	3.3.2)	to	investigate	if	rGM	would	remain	a	significant	factor.	Our	207	

results	show	that	the	contribution	of	rGM	in	the	randomized	networks	is	significantly	lower	than	those	208	

in	 the	 original	 networks	 (p-value	 <	 0.001).	 Taken	 together,	 our	 results	 stress	 the	 interdependency	209	

between	nodal	connectivity	strength	and	GM	volume	for	brain	controllability.		210	

	211	

Figure	 1:	 Visualization	 of	 interaction	 effect	 of	 nodal	 degree	 and	 rGM	 in	 the	 mixed	 effects	 model	 predicting	 average	212	

controllability	(AC).	This	effect	was	controlled	for	by	the	TIV	and	regional	differences	of	average	controllability.	Figure	shows	213	

that	AC	is	best	explained	by	WM	structure	and	rGM	together.	Each	dot	represents	one	region	from	one	subject.	The	density	214	

bar	shows	where	the	majority	of	the	data	is	located.	(A)	Association	between	nodal	degree	and	AC.	(B)	Association	between	215	



rGM	and	AC.	(C)	 Interaction	between	rGM	and	degree	on	AC	suggesting	that	highest	 levels	of	AC	are	reached	when	both	216	

degree	and	rGM	are	high	together.	For	visualization,	median	split	was	used	to	classify	rGM	and	Degree	into	high	and	low	217	

respectively.	In	the	original	model,	both	effects	were	preserved	as	continuous	variables. 218	

Finally,	in	a	further	step,	we	used	the	same	model	to	assess	the	relation	between	MC,	rGM,	and	nodal	219	

degree	(see	Supplementary	Material-Modal	controllability,	Figure	B1).	Replicating	previously	reported	220	

findings	 that	MC	and	nodal	 degree	 relates	 are	 negatively	 correlated	 (see	 Supplementary	Material-221	

Modal	controllability,	Figure	B1-a),	we	find	that	rGM	explains	a	large	part	of	MC	variance	and	that	the	222	

combination	of	nodal	degree,	rGM,	and	their	interaction	is	necessary.	223	

 224	

4.2 Regional	distribution	of	Average	Controllability	based	on	gray	matter	volume	225	

Further,	we	investigated	if	this	global	interdependency	between	WM	and	rGM	(see	previous	section)	226	

differs	on	a	regional	level.	Given	our	previous	results	that	MC	and	AC	are	strongly	negatively	correlated	227	

and	that	this	is	reflected	in	the	LMEs,	here	we	focus	on	the	AC.		228	

Our	results	(see	the	competing	models	Supplementary	Material-Model	comparisons	Table	C2	and	the	229	

full	 outcomes	 of	 the	 winning	 model	 in	 Table	 S2)	 show	 that,	 higher	 rGM	 and	 nodal	 degree	230	

concomitantly	are	associated	with	higher	AC	(see	Figure	2;	Table	S2).	Notably,	highest	AC	levels	with	231	

higher	nodal	degree	were	exhibited	in	the	left	frontal	middle	gyrus	(β=15.11,	95%	CI:[4.09	26.13],	pbonf	232	

=0.007)	left	superior	frontal	gyrus	(β=3.01,	95%	CI:[.24	5.78],pbonf=0.033),	which	agrees	with	previous	233	

research	also	locating	driver	nodes	for	AC	in	the	frontal	lobes.	Further,	higher	levels	of	AC	were	linked	234	

to	higher	levels	of	nodal	degree	in	the	left	Calcarine	(β=1.78,	95%	CI:[.69	2.86],pbonf=0.001).	There	were	235	

also	regions	where	higher	levels	of	nodal	degree	exacerbated	AC,	with	strongest	effects	located	in	the	236	

right	and	left	cuneus	(right	cuneus:	β=-1.34,	95%	CI:[-2.11	-0.57],	pbonf=0.001;	left	cuneus:	β=-2.70,	95%	237	

CI:[-3.33	-2.08],pbonf<0.001).	When	turning	to	the	relation	of	rGM	and	AC,	higher	rGM	associated	with	238	

higher	 AC	 levels	 in	 the	 right	 Calcarine	 (β=5.61,	 95%	 CI:[4.50	 6.73],pbonf<0.001),	 right	 lingual	 area	239	

(β=2.98,	 95%	 CI:[2.63	 	 3.33],pbonf<0.001)	 and	 the	 left	 and	 right	 anterior	 cingulate	 (left	 anterior	240	



cingulate:	 β=	 3.76,	 95%	 CI:[2.61	 4.91],pbonf<0.001;	 right	 anterior	 cingulate:	 β=	 2.88,	 95%	 CI:[2.28	241	

3.48],pbonf<0.001).		242	

There	were	several	regions	exhibiting	lower	AC	levels	with	higher	rGM.	Strongest	effects	were	found	243	

in	the	right	cuneus	(β=-16.17,	95%	CI:[-18.46	-13.88],pbonf<0.001)	and	the	left	frontal	middle	gyrus	(β=-244	

3.34,	95%	CI:[-6.62	-0.07],pbonf=	0.045).	The	finding	suggests	that,	although	on	a	whole	brain	level	nodal	245	

degree	and	rGM	are	concomitantly	associated	with	increased	AC,	for	some	regions,	most	notably	the	246	

left	frontal	middle	gyrus,	higher	nodal	degree	and	lower	rGM	together	exhibit	higher	AC	(see	Table	S2).		247	

	248	

Figure	2:		Visualization	of	interaction	effects	of	mixed	effects	model	predicting	average	controllability	(AC)	based	on	regional	249	

GM	(A)	and	regional	nodal	degree	(B).	For	visualization,	colors	represent	standardized	Beta	coefficients	for	effects	of	rGM	250	

and	nodal	degree	respectively	for	each	brain	region.	Higher	values	indicate	a	beneficial	and	lower	values	indicate	an	impeding	251	

effect	of	rGM	/nodal	degree	onto	AC.		252	

4.3 Replication	study	253	

To	investigate	if	the	results	in	section	3.1.	(complementary	effects	of	rGM	and	nodal	degree	and	AC	254	

and	MC)	are	 replicable,	we	used	data	 from	a	cohort	of	48	subjects	 from	another	publicly	available	255	

dataset	where	we	also	used	a	slightly	different	preprocessing	pipeline	(see	Supplementary	Material-	256	

Replication	study	methods	for	details).	Also,	in	this	data	set	nodal	degree	and	rGM	increased	AC	(see	257	

Figure	3;	for	details	see	Table	S3),	while	highest	AC	levels	were	achieved	when	both	nodal	degree	and	258	

higher	rGM	were	high	together	(β=0.08,	95%	CI:[0.04	0.12],	pbonf	=0.01).	Furthermore,	rGM	and	nodal	259	



degree	both	decrease	MC	and	the	lowest	values	of	MC	were	achieved	only	for	the	lowest	levels	of	rGM	260	

and	nodal	degree	(Supplementary	Material	-	Modal	controllability,	Figure	B2).	Taken	together,	these	261	

results	 suggest	 that	 this	 association	 between	 rGM	 and	 nodal	 degree	 is	 robust	 and	 not	 driven	 by	262	

individual	differences	in	different	data	sets.	263	

	264	

Figure	3:	Replication	sample.	AC	is	estimated	based	on	WM	structure	but	strongly	relates	to	rGM.	Each	dot	represents	data	265	

from	one	region	of	one	subject	and	density	bar	shows	where	the	majority	of	data	is	located.	(A)	Effect	of	nodal	degree	on	AC.	266	

(B)	Effect	of	rGM	on	AC.	(C)	Interaction	effect	between	rGM	and	nodal	degree	suggests	that	highest	levels	of	AC	are	reached	267	

when	both	degree	and	rGM	are	high	together.	For	visualization,	median	split	was	used	to	classify	rGM	and	degree	into	high	268	

and	low	respectively.	In	the	original	model,	both	effects	were	preserved	as	continuous	variables.		269	

	270	

5 Discussion	271	

In	this	work,	we	investigated	how	brain	volumetrics	contribute	to	global	network	control	properties	272	

derived	from	the	structural	connectome	composed	of	the	white	matter	fiber	tracts.	In	line	with	(John	273	

Dominic	Medaglia	et	al.,	2017),	we	hypothesized	that	large-scale	network	dynamics	derived	from	the	274	

structural	connectome	(here	quantified	by	average	and	modal	brain	controllability)	would	be	further	275	



explained	by	GM	structural	properties.	This	work	is,	to	our	knowledge,	the	first	attempt	to	map	the	276	

interdependency	of	both	metrics,	and	we	discuss	findings	with	respect	to	their	clinical	relevance.		277	

We	show	that	on	average,	the	amount	of	rGM	directly	affects	the	brain’s	availability	to	dynamically	278	

transition	 between	 brain	 states	 and	 to	 adopt	 new	 modes	 of	 activity.	 However,	 levels	 of	 brain	279	

controllability	were	best	explained	when	combining	 information	 from	structural	properties	of	both	280	

WM	 and	 rGM,	 suggesting	 that	 volumetric	 might	 provide	 additional	 information	 in	 relating	 brain	281	

controllability	 to	 understanding	 cognition,	 neurological	 and	 neuropsychiatric	 disorders,	 and	 the	282	

concept	of	brain	reserve.	283	

5.1 Mediating	role	of	GM	on	the	relation	between	WM	and	brain	controllability	284	

Our	finding	that	nodal	degree	is	highly	predictive	of	brain	controllability	agrees	with	previous	works	285	

(Gu	et	al.,	2015;	John	D	Medaglia,	2019),	suggesting	that	the	brain’s	ability	to	traverse	into	easy	and	286	

difficult-to-reach	 brain	 states	 relies	 on	 strength	 of	 structural	 connectivity,	 which	might	 reflect	 the	287	

degrees	of	 freedom	 to	 steer	 the	 transition	of	brain	 states.	However,	our	 findings	 suggest	 that	 this	288	

picture	is	incomplete.	Structural	connectivity	relies	on	sufficient	support	from	GM	reserves.	Highest	289	

effects	of	AC	were	reached	with	enhanced	nodal	degree	within	frontal	regions,	which	support	the	rich	290	

literature	showing	that	frontal	brain	networks	play	a	central	role	in	initiating	dynamic	reconfigurations	291	

during	executive	cognition.	However,	increased	rGM	within	that	very	region	was	negatively	related	to	292	

brain	 controllability.	 While	 within	 clinical	 populations	 reduced	 rGM	 is	 generally	 related	 to	293	

neuropathology,	 there	 is	 research	 suggesting	 that	 within	 healthy	 subjects,	 rGM	 decreases	 with	294	

increases	of	WM	density	throughout	development	from	adolescence	to	adulthood.	This	finding	has	295	

been	related	to	reduced	quantity	of	synapses	resulting	 from	synaptic	pruning	 (Giorgio	et	al.,	2010)	296	

which	has	been	predominantly	found	in	primary	visual	(calcarine	sulcus)	and	prefrontal	cortex	(middle	297	

frontal	 gyrus)	 (Huttenlocher,	 1979;	 Huttenlocher	 &	 Dabholkar,	 1997).	 In	 our	 data,	 average	 brain	298	

controllability	 was	 maximal	 when	 exactly	 these	 regions	 showed	 reduced	 rGM	 and	 increased	299	

connectivity	 of	 the	white	matter	 connectome.	One	 could	 speculate	 that	 this	 finding	 reflects	more	300	



efficient	and	developmentally	advanced	brain	functioning	in	a	broad	range	of	tasks	potentially	related	301	

to	synchronizing	the	actions	with	intentions	in	a	goal	directed	way.		302	

5.2 Potential	contribution	of	sensory	regions	to	brain	controllability	303	

On	a	functional	level,	we	find	several	key	visual	areas	to	stand	out	with	respect	to	both	average	as	well	304	

as	modal	controllability.	Enhanced	rGM	in	the	right	cuneus	has	previously	been	reported	to	predict	305	

higher	 error	 rates	 in	 a	 response	 inhibition	 task	 in	 bipolar	 (Haldane,	 Cunningham,	 Androutsos,	 &	306	

Frangou,	2008)	and	has	also	been	related	to	motor	response	in	functional	imaging	studies	(Booth	et	307	

al.,	2005;	Matthews,	Simmons,	Arce,	&	Paulus,	2005).	We	believe	that	these	findings	suggest	that	the	308	

function	 of	 those	 primary	 visual	 areas	 goes	 far	 beyond	 unimodal	 information	 processing.	 Closely	309	

related,	recent	work	suggests	that	primary	sensory	cortices	might	occupy	more	“hub-like”	positions	in	310	

the	 brain	 through	 enhanced	 long-distance	 connectivity	 across	 brain-wide	 communities	 (Esfahlani,	311	

Bertolero,	Bassett,	&	Betzel,	2020).	Taken	together,	we	speculate	that	sensory	regions	could	be	ideal	312	

hot	spots	for	brain	controllability	nodes.	Given	their	high	global	inter-connectivity,	these	sensory	nodes	313	

act	potentially	as	the	controllers	with	respect	for	the	afferent	 inputs	while	the	other	regions	act	as	314	

controllers	for	efferent	demands.		315	

5.3 Linking	GM	and	WM	in	the	context	of	controllability	316	

Cognitive	functioning	arises	from	complex	re-configurations	across	metabolically	expensive	large-scale	317	

networks,	 facing	 a	 trade-off	 between	 wiring	 cost	 (topological	 efficiency)	 and	 efficient	 adaptation	318	

patterns	between	multiple	neuronal	populations	(topological	value;	Bullmore	&	Sporns,	2012).	Recent	319	

studies	have	suggested	that	the	behavioral	relevance	of	this	tradeoff	between	topological	efficiency	320	

and	topological	value	can	be	described	by	the	brain’s	energy	expenditure	to	exhibit	control	along	large-321	

scale	structural	networks.	The	ratio	of	neuronal	signaling	to	non-signaling	related	metabolic	energy	322	

expenditure	has	shown	opposite	directionalities	for	white	and	gray	matter	(Yu	et	al,	2018,	Zhu	et	al	323	

2012).	Here,	we	speculate	that	energy	expenditure	could	be	one	of	the	key	factors	linking	GM	and	WM	324	

in	the	framework	of	controllability	analysis.	AC	relates	to	the	average	energy	a	brain	region	needs	to	325	



exert	to	steer	the	brain	dynamics	into	all	possible	brain	states	(Gu	et	al.,	2015;	Y.	N.	Kenett	et	al.,	2018;	326	

Liu,	 Slotine,	 &	 Barabasi,	 2011)	 and	 therefore,	more	 regional	 gray	matter	 volume	 is	more	 likely	 to	327	

provide	the	sufficient	energy.	In	contrast,	in	absence	of	sufficient	WM	tracts	i.e.	lower	nodal	degree,	328	

rGM	cannot	fully	force	the	transitions	since	the	energy	cannot	be	exerted.	This	conception	has	to	be	329	

expressed	on	a	behavioral	 level,	 in	that	the	brain	system’s	control	capacity	is	especially	sensitive	to	330	

rGM.	 Indeed,	 a	 range	of	 studies	 have	 suggested	 that	 rGM	but	 not	white	matter	 changes	 relate	 to	331	

abnormal	 behavioral	 conditions,	 such	 as	 in	 antisocial	 personality	 disorder	 (Raine	 et	 al.,	 2000),	332	

medication-naive	high-functioning	children	with	autism	spectrum	disorder	(Palmen	et	al.,	2005),	and	333	

alcohol	dependent	individuals	(Fein	et	al.,	2002).	Closely	related,	MC	is	strongest	when	nodal	degree	334	

and	 rGM	 are	 simultaneously	 low.	MC	 is	 related	 to	 the	 ability	 to	 drive	 the	 brain	 dynamics	 toward	335	

difficult	 to	 reach	 states	 by	 change	 the	modes	 of	 activity	 on	 the	 whole	 brain	 level.	 It	 is	 therefore	336	

conceivable	to	propose	that	similar	to	the	relevance	of	nodal	sparsity	to	enable	optimal	MC	(Gu	et	al.,	337	

2015),	scarcity	of	rGM	enhances	the	ability	of	the	host	node	by	exerting	more	fine-grained	effects	that	338	

affect	only	a	minimal	set	of	others	nodes.	339	

5.4 Limitations:	beyond	linear	full	controllability	340	

Our	 results	 in	 the	 current	 study	 warrant	 the	 conclusion	 that	 the	 interplay	 of	 gray	 matter	 and	341	

controllability	has	a	complex	nature.	Different	kinds	of	controllability	are	best	practiced	for	different	342	

values	of	gray	matter	volume.	While	this	seems	to	be	a	satisfying	first	insight	on	the	potential	missing	343	

role	of	gray	matter	in	studying	brain	controllability,	there	are	important	aspects	which	remain	yet	to	344	

be	explored.	The	choice	of	nonlinear	dynamics	to	define	the	range	of	controllability	metrics	could	have	345	

considerable	effects	on	our	findings.	For	instance,	it	is	suggested	that	importance	of	nodal	geometry	346	

could	actually	follow	opposite	trends	when	nonlinear	and	control	models	are	compared	(Jiang	&	Lai,	347	

2019).	How	the	nonlinearity	might	(re)define	the	role	of	rGM	for	control	is	an	interesting	question	to	348	

ask.	Relatedly,	brain	controllability	metrics	considered	in	the	current	paper	are	trajectory	unspecific.	349	

This	approach,	although	theoretically	interesting	and	widely	practiced,	is	of	limited	practical	relevance.	350	

Studies	of	dynamical	functional	and	structural	connectivity	and	analysis	of	structural	covariance	have	351	



reliably	shown	that	brain	state	trajectories	are	not	random,	but	rather	follow	general	rules	(see	Gu	et	352	

al.,	2017;	Tang	&	Bassett,	2018	for	recent	attempts	to	accommodate	trajectory	dependence	within	in	353	

the	broader	context	of	network	control	theory).	Taken	together,	we	believe		that	the	role	of	GM	should	354	

be	further	studied	and	possibly	updated	accounts	of	controllability	introduced.	An	updated	version	can	355	

incorporate	 the	 nonlinearity	 of	 controllability	 indices	 and	 the	 rGM	 relevance	 by	 introducing	 novel	356	

metrics	which	are	simultaneously	dependent	on	structural	connectivity	and	regional	gray	matter.		357	
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